A	lactase, temperature effects, 34-35
Acceptor molecules, effect on transgalactosylase activity, 76–79 Activation energy, 204–205 lactase, 41 transgalactosylase activity of lactases, 82–83 Agglomeration, 209–210 Aglycones, specificity of transgalactosylase reaction, 81 Algin, immobilization of lactases, 43 Allolactose	saccharide production and temperature, 70-71 transgalactosylase products, 79-80 Assay methods, transgalactosylic activity, 64-69 Axial-annular flow reactor, 45-46 B Bacillus circulans, β-galactosidase from, 86, 89 Bacillus sterarothermophilus, lactase, 58 Bifidobacterium, growth promoters, 85
production K. lactis β-galactosidase velocity, 65, 70 potassium and magnesium effects, 82 in yogurts, 84 Antiplasticization, by sugars, 156–159 Arrhenius behavior, compared to WLF behavior, 188–200 Arrhenius equation, explicit reference temperature, 207 Arrhenius kinetics, contrast with WLF kinetics, 204–212 Arrhenius plots, 205–206 Arrhenius relaxation behavior, 193 Aspergillus fonsecaeus, lactase, 59 Aspergillus niger lactase, potential application in HTST pasteurization of milk, 89 product inhibition, 9–10 saccharide production and temperature, 70–71 transgalactosylase products, 79–80 Aspergillus oryzae immobilized enzyme system, column reactor using, 47, 49	C Caking, 209-210 Calcium, intake, milk avoidance and, 4 Carbohydrates, low-molecular-weight Cg' values, 167-168 disparity, 229 glass transition temperature, 148-149 solute-specific subzero glass transition temperature, 139 Carbohydrate-water systems, kinetically metastable, WLF behavior, 189 Caseinate, 37 Continuous stirred tank reactors, lactase immobilization, 18-19 Cookies absence of polymerization and glutenins and gliadins, 224 glass transition, 185 Corn chemical components, 271-272 quality protein maize, 274 structure, 273-278

caryopsis, 274	water and glass dynamics, 160
endosperm, 275–277	WLF equation, 160, 177-188
enzymatic degradation, 291–292	
germ, 277–278	E
protein bodies, 275, 277	1 2
seed coat, 274-275	Energy, activation, 204-205
steeping agent effects, 283-286	-
types used, 273	.
Corning process, hydrolysis of lactose,	F
47, 51	Food
Corn sweeteners, 294–295	amorphous powder, state diagram,
Corn wet milling, 271–297	temperature versus water content,
biochemical effects, 287	209
cleaning, 278	aqueous glasses, diffusion of water and
industry scale, 273	solute, 169–177
kernel degradation, 283-286	
laboratory versus commercial milling,	flour-based products, viscoelasticity, 184–185
288-290	
lactic acid role, 281-282	glass transition temperature
milling and final processing, 287-288	measurement, 114–118
nonstarch by-products, 296	labile components, encapsulation, 171
process flow, 272	nonequilibrium nature of products and
products, derived from starch, 292-295	processes, references, 115–117
modified starches, 293-294	patents using β-galactosidase activity
native starches, 292-293	for galactooligosaccharide
using fermentation or enzymatic	production, 87
technologies, 294-295	transgalactosylase activity, 84–95
research to improve, 290-292	Food molecule-water systems,
steeping, 278-280	characterization, 120, 124–125
steepwater absorption, 280-281	Food polymer science, 106–143; see also
sulfur dioxide role, 282-283, 285-286	Dynamics map; Glass transition
temperature role, 286-287	temperature
Crackers, glass transition, 185	evolution of approach, 109–114
Cryostabilization, 162-163, 165-166	glasses and glass transitions, 107–109
Crystallization	temperature measurement, 114-118
kinetics, 210-212	ice-melting onset transition, 164–165
time, WLF- versus Arrhenius-type	plasticization
temperature dependence, 181-182	effect on glass transition temperature,
Curing, material states, 214	118, 120–125
	by water, 150–159
_	state diagrams, 135–143
D	structure-property relationships,
Dairy industry, wests utilization 20, 22	references, 107
Dairy industry, waste utilization, 20–22	thermosetting, amorphous polymers,
Disaccharides formed by K. Jactic lectors	212–226
Disaccharides, formed by K. lactis lactase,	water and glass dynamics, 127, 129–135
77, 79 Dynamics map 120, 124, 150, 177	Food-polymer systems, aqueous,
Dynamics map, 129, 134, 159–177	viscoelastic behavior, 183–188
Cg' values, 166–169	Fragility plot, 193
solute-specific subzero glass transition	Freezing point, depression, oligosaccharide
temperature, 161, 163–166	formation and, 30

Fringed micelle model, crystalline-amorphous structure of	measurement in foods, 114-118
partially crystalline polymers, 129, 133	methods, 227-228
Fuel alcohol, from corn wet milling, 295	molecular weight effect, 138, 144-150
	maltooligosaccharides, 144, 147
G	plasticization effect, 118, 120-125
ď	polymer-polymer and
Galactobiose, in yogurts, 84	polymer-plasticizer blends, 145-150
Galactose	relaxation phenomena, 195-196
concentration changes and allolactose	solute-specific subzero, 136-137, 139-143,
production, 83	161, 163–166
effect on lactase activity during milk	as function of dextrose equivalent,
processing, 12	144–145
enzymatic modification, 10	as function of molecular weight,
β-Galactosidase, see also Lactase	maltooligosaccharides, 144, 146
from B. bifidium, 85	low-molecular-weight carbohydrates,
catalysis of lactose hydrolysis, 24-25	139–143
hydrolysis, 23-24	temperature-composition domain above,
patents using, for production of	207–208
galactooligosaccharides, 87	temperature location, determined by free
purified, 23	volume, 198
specificity for lactose portions, 63	temperature-time conditions of
Galactosyl, enzymatic transfer reactions, 60	measurement, 227
Gelatinization, sugar role, 158	Glassy state, recent publication, 111-113
Gelation, curing reaction and, 214	Gliadins, 216
Gel point, 214	local intermolecular disulfide
Gidley endotherm, 172	crosslinking, 217, 222
Glass dynamics, 133-135, 160	thermolabile disulfide bonds, 225
Glass-forming liquids	Glucose, concentration changes and
behavior classification, 192-195	allolactose production, 83
super-structuring effects, 197–198	Glucose oxidase, enzymatic acidification of
Glass transition, 107–109	milk by, 16
definition, 108	Gluten
ice-melting onset transition, 164-165	amorphous, thermosetting behavior,
recent publication, 111–113	218–223
research needs, 226–233	aqueous systems, thermoplastic and
studies using methods other than DSC or	thermoset behavior, 223-226
DMA, 115, 119–120	classification of proteins, 216
texture of cereal and, 185	corn, 288, 296
Glass transition temperature diluent-monomer blend, 175-176	disulfide crosslinks, no change in
effects of water as plasticizer, 151–159	free-SH groups, 224
as function of	glassy state, 123, 126–127
log degree of polymerization, 138, 144	hand-washed and lyophilized, glass
moisture, hand-washed and lyophilized	transition temperature as function of moisture, 153-154
wheat gluten, 153–154	
gluten, moisture effect, 219	pathways leading to ultimate thermosets, 225-226
low-molecular-weight carbohydrates,	plasticization, bread-baking, 218–219
148–149	water-plasticized, thermosetting, 222–223

wheat, as viscoelastic polymer system,	lactase
215–218	concentration effect on lactase-
Glutenins, 216–217	catalyzed hydrolysis, 54-55
long-range intermolecular disulfide	disaccharides and oligosaccharides
network formation, 217, 222	formed by, 77, 79
thermolabile disulfide bonds, 225	temperature requirements, 34
Glycerol, solute-specific subzero glass	lactase stability
transition temperature, 228-229	enzyme concentration effect, 37-38
Glycoside hydrolases, 23-25	function of protease contamination, 40
Glycosyl, enzymatic transfer reactions, 60	product inhibition, 9-10
Gordon-Taylor equation, 150	
	Ľ
Н	L
	Lactase, see also β -Galactosidase
Hevea rubber, local viscosity, 192	commercial
Hollow-fiber enzymatic reactor, 52-53	future potential, 56-59
loaded on lumen side of membrane,	properties, 30-39
52–54	purity, 39-41
Hydrolysis	sources, 5–6
lactose	technical data, 32
chemical reactor, 45–46	transgalactosylase assay conditions, 64,
in milk, 10–12	66–68
reverse, versus transgalactosylation, 61–64	deficiency, 3 effect on sensory properties of nonfat ice
whey, immobilized lactase reactors,	milk, 14–15
46–47	enzyme modification, 57–58
	in fermented milk, 14–17
	fungus-derived, optimum temperatures,
I	33–34
Ice cream, lactase in, 13-15	hydrolase, assay methods and enzyme
Industrial chemicals, from corn wet milling,	activity
295	chemically modified substrates, 27-29
Inhibition	colorimetric analysis, 26-27
lactase, 42-43	hydrolysis rates, 30-31
transgalactosylase activity of lactases,	hydrolase activity, 22-59
82-83	activation and inhibition, 41–43
	assay methods and, 25–31
▼ 7	enzyme mechanism, 23–26 future potential for commercial
K	sources, 56–59
Kluyveromyces fragilis, β-galactosidase, 25,	immobilization mechanisms and
78–79	reactor systems, 43–51
Kluyveromyces lactis	ultrafiltration bioprocess reactors, 47,
β-galactosidase	50, 52–56
hydrolysis catalyzed by, 72-73	in ice cream, 13-15
specificity, 81	immobilization, 18-20
transgalactosylase activity and	commercially available technologies,
substrate components, 77-78	47–48
velocity for production of allolactose,	immobilized systems, 16, 18-20, 44
65, 70	impact of microbial source, 80

level decrease with age, 3-4	hydrolysis
linked to modified corn grits, 45	catalyzed by β -galactosidase, 24–25
low-lactose milk, 6-7	chemical reactor, 45-46
processing by consumers, 7-9	maximum product synthesis, 72
powders, lactase units, 28-29	syrup production, 21-22
pressure-induced immobilization, 19	Lactose-reduced foods, 5
product inhibition, 9-13	Lactulose, formation, 69
protease activity, 40-41	•-
research needs, 89-90	M
selection	Magnesium ions, effects on
pH, 33	β -galactosidase, 82
stability, 35-39	Maize, see Corn
temperature, 33-35	Maltodextrins, 295
stability	Maltooligosaccharides
pH change effects, 39	$C_{\rm g}'$ values, 168–169
skim milk	glass transition temperature as function
enzyme concentration effect, 37-38	of molecular weight, 144, 146-147
media and temperature effect, 37	Michaelis-Menten equation, analogy with
transgalactosylase activity, 59-89	WLF equation, 200-204
activation and inhibition, 82-83	Microwave, reheating of baked products,
assay methods, 64-69	220–221
commercial source effect, 77-80	Milk
compounds formed, 86, 88	fermented, lactase in, 14-17
donor plus acceptor molecules, 76-79	β -galactosidase stability in, 36
in food, 84–85	low-lactose, 6-7
future sources, 86, 89	processing by consumers, 7-9
future utilization, 85-89	skim
lactase concentration, 76	half-life in column reaction, 47, 50
pH, 65, 69-70	lactase stability
potential uses, 89-90	enzyme concentration effect, 37–38
specificity, 80-82	media and temperature effect, 37
substrate concentration, 76-70	sugar, malabsorption, 2-4
temperature and reaction time, 70-76	MM equation, 202
transgalactosylation versus reverse	Mobility
hydrolysis, 61–64	defined by WLF equation, 179
waste lactose utilization, 20-21	diffusional, above and below glass transition temperature, 173-174
yeast	water, in glassy materials, 169–170
immobilization of whole cells, 45	water, in glassy materials, 109-170
stability, 35	0
Lactic acid	•
in laboratory steeping, 289-290	Oligosaccharides
role, in corn wet milling, 281-282	formed by K. lactis, 77, 79
Lactobacillus bulgaricus, potential lactase	in low-lactose milk and whey products,
sources, 86	84–85
Lactose, 37	production by transgalactosidation,
concentration effect on	lactose concentration, 74-76
allolactose production, 65, 69-70	n
production of oligosaccharides by	P
transgalactosidation, 74-76	pH, lactase, 65, 69-71
half-life in column reaction, 47, 50	selection and, 33
• •	•

Plasticization	Solute, diffusion in aqueous food glasses,
effect on glass transition temperature,	169–177
118, 120–125	Stability, β -galactosidase, 35–39
by sugars, 156-159	Starch
by water, 150-159, 187-188	acid-modified, 294
breakfast cereals, crispness and, 185	crosslinked, 293
distinguished from presence of water, 156-157	gelatinization and retrogradation studies, 123, 128-129
unfreezability, 170	glassy state, 123, 126-127
Plasticizer, effect on curing and	modified, products from, 293-294
vitrification, 214	native, products from, 292-293
Polyisobutylene, local viscosity, 192	stabilized, 293
Polymer-plasticizer blends, glass transition	Starch-water system, gelatinized, glass
temperature, 145–147, 149–150	transition temperature as function of
Polymer-polymer blends	mass fraction, 152–153
diffusional motion, 174–175	State diagrams, 135–143
glass transition temperature, 145–147, 149–150	glass transition temperature
Polymers	as function of mass fraction, 152–153
amorphous, thermosetting, 212–226	location, 199
curing, 213–214	references, 137–138
wheat gluten, see Gluten	Steeping, corn, 278–280
crystalline melting enthalpies, 190	Steepwater, absorption by corn, 280–281 Streptococcus thermophillus
glass-forming, $T_{\rm m}/T_{\rm g}$ ratio, 191–192	lactase, 58
partially crystalline	potential lactase sources, 86
fringed micelle model of	Sucrose, synthesis, lactase usage, 22
crystalline-amorphous structure,	Sugar
129, 133	aqueous solutions, viscosity temperature
viscoelastic behavior, 183-184	dependence, 180-181
Potassium ions, effects on	effect on β -galactosidase stability, 36
β-galactosidase, 82	malabsorption, 2-4
Product inhibition, lactase, 9–13 Prolamins	plasticization and antiplasticization by,
corn, 275, 277	156–159
wheat, 216	Sulfur dioxide
mout, 210	in laboratory steeping, 289
R	role in corn wet milling, 282–283,
D	285–286
Recrystallization, 211–212 Relaxation	
diffusion-limited, rate defined by WLF	T
equation and Arrhenius equation,	
205–206	Temperature
enthalpic, 172–173	lactase selection and, 33-35
α Relaxation, 199	reaction time and, lactase, 70-76
β Relaxation, 199–200	role in corn wet milling, 286–287
Rotational diffusion, 196-197	Thermosetting, amorphous polymers, 212-226
_	Time-temperature scaling parameter, WLF
S	plots, 189–190
Salt, effect on β -galactosidase stability, 36	Time-temperature transformation reaction
Shortening, effect on four-water bread	
	diagram, 212-213
doughs, 220	diagram, 212–213 Transgalactosylase activity, see Lactase

Transgalactosylation, versus reverse hydrolysis, $61-64$ Translational diffusion, $196-197$ Trehalose, C_g' value, 168	Water-food structure interactions, 103-233; see also Food polymer science; Glass transition temperature studies, 104-105
	Whey
U	β -galactosidase stability in, 36 half-life in column reaction, 47, 50
Ultrafiltration	hydrolysis, immobilized lactase reactors,
bioprocess reactors, lactose hydrolysis,	46–47
47, 50, 52–56	lactose syrup production, 21-22
enzyme bioreactor, modified localized,	waste utilization, 20-21
52, 54	Williams-Landel-Ferry free-volume
lactase immobilization, 18-20	theory, 135, 177
	WLF behavior
\mathbf{v}	compared to Arrhenius behavior, 188-200
\$10	effect on kinetics of diffusion-limited
Viscosity	relaxation processes, 208-209
as function of reduced temperature for	relaxation times, 189-191
glassy and partially crystalline polymers, 108–109	WLF coefficients, intuitive implications, 200
local, 198	WLF equation, 160, 177-188
temperature dependence, aqueous	analogy with Michaelis-Menten
solutions, 180–181	equation, 200-204
Vogel-Tammann-Fulcher equation, 194	application, 178, 230
vogor rummum rummer equation, 174	aqueous food-polymer systems, viscoelastic behavior, 183-188
\mathbf{w}	correct glass transition temperature reference state, 230-231
Water	crystallization kinetics, 181–182, 210–212
as crystallizing plasticizer, 161	explicit reference temperature, 207
diffusion in aqueous food glasses,	mobility definition, 179
169–177	WLF kinetics, 135, 176
mobility, in glassy materials, 169-170	contrast with Arrhenius kinetics, 204-212
as plasticizer, 150-159	WLF shift factor, 189-190
breakfast cereals, crispness and, 185	
distinguished from presence of water, 156-157	Y
food and biological materials, 120-123	Yogurt
independent mechanical aspect, 187-188	allolactose and galactobiose in, 84 lactose content, 14-16
mechanical relaxation kinetics, 186-187 unfreezability, 170	Z
Water activity concept, 229–230	Zea mays, see Corn
Water dynamics, 127, 129–133, 160	Zein, 275, 277